REACTIONS OF A 2-PICOLYL-BRIDGED PALLADIUM(II) COMPLEX WITH SOME PYRAZOLE DERIVATIVES

MASAYOSHI ONISHI*, KATSUMA HIRAKI, TOSHIHIRO ITOH, and YUSHICHIRO OHAMA

Department of Industrial Chemistry, Faculty of Engineering, Nagasaki University, Bunkyo-machi, Nagasaki 852 (Japan)

(Received April 21st, 1983)

Summary

A 2-picolyl-bridged dinuclear complex, $[(Pd(2-picolyl)Cl(PPh_3))_2]$ (I) reacted with alkali metal salts of poly(1-pyrazolyl)borates, Na(BPz_4) (Pz = 1-pyrazolyl), Na(HBPz_3), and K(H_2BPz_2) to afford the complexes, $[(Pd(2-picolyl)(BPz_4))_2]$ (II), $[Pd(2-picolyl)(HBPz_3)(PPh_3)]$ (III), and $[(Pd(2-picolyl)(H_2BPz_2))_2]$ (V), respectively. Complexes II and V retained the 2-picolyl bridge, whereas III was mononuclear without the bridge. Complex I was treated with hydrated silver perchlorate in the presence of tris(1-pyrazolyl)methane to give $[(Pd(2-picolyl)(OH_2)(PPh_3))_2](ClO_4)_2$ (VI) without incorporating the neutral ligand.

Introduction

Oxidative addition of 2-picolyl chloride to $[Pd(PPh_3)_4]$ gave a 2-picolyl-bridged complex of $[\{PdCl(2-picolyl)(PPh_3)\}_2]$ (I), containing two bonds from the 2-picolyl groups to the palladium atoms via a 2-picolyl methylene group and the 2-picolyl nitrogen [1]. Excellent X-ray structural analysis by Kawaguchi et al. indicated that the molecular symmetry was C_2 and that the bridge of two 2-picolyl groups stretched two palladium atoms to give a boat-form-like eight-membered ring of Pd(2picolyl)₂Pd [2]. Although triphenylphosphine and 4-picoline could not cleave the bridge of 2-picolyl groups, acetylacetonate $[(acac)^-]$ and dimethyldithiocarbamate $[(Me_2NCS_2)^-]$ anions detached the 2-picolyl nitrogen from palladium to yield mononuclear complexes [1].

Our interest in coordinating properties of poly(1-pyrazolyl)borate groups [3-6] and poly(1-pyrazolyl)methane derivatives [6,7] led us to study their reactivities towards the 2-picolyl-bridged dinuclear complex I. Poly(1-pyrazolyl)borate ligands are a versatile and interesting class of uninegative ligands which have a potentiality for novel fluxionality [4-6] on the basis of NMR spectroscopy, and have been shown to confer considerable stability on organometallic complexes apparently because of their favorable electronic and geometrical properties [8].

Experimental

General procedures

Preparative operations were performed under dry nitrogen. Complex I was obtained from oxidative addition of 2-picolyl chloride to $[Pd(PPh_3)_4]$ [1]. Sodium tetrakis(1-pyrazolyl)borate $[Na(BPz_4)]$ (Pz = 1-pyrazolyl) [3], sodium hydrotris(1-pyrazolyl)borate $[Na(HBPz_3)]$ [3], potassium dihydrobis(1-pyrazolyl)borate $[K(H_2BPz_2)]$ [3], tris(1-pyrazolyl)methane [9]. and 2,2-bis(1-pyrazolyl)propane [7] were prepared by literature methods. ¹H and ¹³C NMR, mass, and IR spectra, melting points, molar conductivities, and molecular weights were measured according to the methods described in the previous paper [1].

Reaction of I with sodium tetrakis(1-pyrazolyl)borate

A mixture of Na(BPz₄) (95 mg) and I (150 mg) in benzene (15 ml) was stirred at ca. 50°C for 6 h, and the solvent was evaporated to dryness in vacuo. The resulting solid was recrystallized from dichloromethane and hexane to yield a pale yellow powder of [$(Pd(2-picolyl)(BPz_4))_2$] (II), 43 mg (yield 30%).

Reaction of I with sodium hydrotris(1-pyrazolyl)borate

Complex I (100 mg) was mixed with Na(HBPz₃) (51 mg) in benzene (15 ml) and the mixture was 6 h stirred at ca. 50°C. Then the mixture was concentrated in vacuo to afford a solid, which was recrystallized from dichloromethane and hexane. An off-white powder (28 mg) was collected and characterized as $[Pd(2-picolyl)(HBPz_3)(PPh_3)]$ (III) (yield 21%).

Reaction of I with potassium dihydrobis(1-pyrazolyl)borate

Complex I (200 mg) in THF (15 ml) was treated with $K(H_2BPz_2)$ (78 mg) and the mixture was stirred overnight at room temperature. After removal of the solvent, the resulting solid was chromatographed on a silica-gel column under nitrogen. The first yellow fraction was eluted with deaerated benzene to give a yellow powder (IV, 5 mg) possibly $[Pd(PPh_3)_x]$ or its cyclometalation product. The second yellowish brown fraction was eluted to give a yellow powder, $[{Pd(2-picolyl)(H_2BPz_2)}_2]$ (V), 30 mg (yield 22%).

Reaction of I with hydrated silver perchlorate $(AgClO_4 \cdot H_2O)$ in the presence of poly(1-pyrazolyl) methane derivatives or pyrazole

Hydrated silver perchlorate (94 mg) in benzene (15 ml) was added slowly to a benzene solution of I (200 mg) and tris(1-pyrazolyl)methane (95 mg). After stirring overnight at room temperature and evaporation to dryness in vacuo, recrystallization of the residue from acetone and ethyl ether gave a yellow powder, [{Pd(2-picolyl)(OH₂)(PPh₃)}₂](ClO₄)₂ (VI) (111 mg, yield 48%). Similar reactions of I with neutral 2,2-bis(1-pyrazolyl)propane and pyrazole were carried out to afford the identical product VI. Complex VI was also obtained from a reaction of I with AgClO₄ · H₂O without addition of any pyrazolyl derivatives.

Results and discussion

The dinuclear complex I with the 2-picolyl-bridged structure [1,2] was treated with some poly(1-pyrazolyl)borate anions $[H_n BPz_{4,n}]^-$ (n = 0, 1 and 2) and poly(1-

pyrazolyl)methane derivatives to yield new 2-picolylpalladium(II) complexes (Scheme 1), and their analytical data and physical properties are summarized in Tables 1, 2, and 3.

Sodium tetrakis(1-pyrazolyl)borate displaced triphenylphosphine in I, and gave a nonionic complex II. Determination of the molecular weight of II in CH_2Cl_2 indicated a dinuclear structure of [$\{Pd(2-picolyl)(BPz_4)\}_2$]. Its ¹H NMR spectrum showed two doublets (J 7.7 Hz) at δ 3.05 and 4.45 ppm for non-equivalent methylene protons in the 2-picolyl group coupled to each other. Analogous geminal coupling of the two methylene protons was observed in I [1], and II was assumed to retain the rigid boat-form-like configuration of the 2-picolyl bridge.

In our previous papers [5,6], we reported preparation of some BPz₄-palladium(II) complexes with cyclopalladated chelate moieties bound to metal via a nitrogen donor and an aryl or alkyl group, and observed temperature-dependent ¹H NMR spectra of the BPz₄ ligand which indicated spectroscopic equivalence of four pyrazolyl groups at high temperature. A fluxional motion of the BPz₄ ligand was accounted for by a mechanism that one of the two uncoordinated pyrazolyl groups on boron underwent coordination to palladium through a vacant axial coordination-site followed by dissociation of one of the two originally coordinated pyrazolyl groups. However, the BPz₄ ligand of II did not show any fluxional behavior even at 52°C in CDCl₃. The boat-form-like configuration of the Pd(2-pico-lyl)₂Pd ring blocked possibly the vacant axial site, which was expected to be open to the third pyrazolyl group.

In contrast to II, nonionic complex III prepared from Na(HBPz₃) has a mononuclear structure, and a characteristic ν (BH) band was observed at 2435 cm⁻¹. In the ¹H NMR spectrum in CDCl₃, three pyrazolyl groups were spectroscopically equivalent in the temperature range 28 to -31° C, indicating fluxional behavior of the HBPz₃ ligand. It is well-known that fluxional motion of the HBPz₃ ligand occurs more easily than that of the BPz₄ ligand [5,6]. A virtual triplet (J 2.0 Hz) at δ 6.05 ppm was attributed to three spectroscopically equivalent protons of H(4) in the

Complex	Analyses (Fo	ound (calcd.) (%))		M.p."	M.W. ⁿ	Δ _M ⁷
	c	Н	z	(°C)		
[{Pd(2-picolyl)(BPz_4)},]	45.03	3.92	26.13	244-250	934 ^c	0.3 °
(II)	(45.27)	(3.80)	(26.39)		(955.2)	
[Pd(2-picolyl)(HBPz,)(PPh,)]	58.65	4.69	14.70	157-161	680.5 ^d	0.7 ^g
	(58.82)	(4.64)	(14.55)		(673.8)	
[{ $Pd(2-picolyl)(H_2BP_2)$ },]	42.25	4.20	19.92	144-146	υ	υ
(A)	(41.72)	(4.08)	(20.27)			
$\left[\left(\text{Pd}(2\text{-picolyl})(\text{OH}_2)(\text{PPh}_3)\right)_{\gamma}\right](\text{CIO}_4)_2$	50.14	4.30	2.21	201 - 202	l	248 ^g
(IV)	(49.85)	(4.01)	(2.42)			
" With decomposition. Samples were placed b dichloromethane. "In benzene. " Not measured."	between two thin Molar conductivi	microscope-cover ty, Ω^{-1} cm ² mol ⁻	r-glasses. ^b Molecu ¹ . Determined for	ular weight determir $1.0 \times 10^{-3} M$ solutio	ned with vapor pr ins at 25°C. ⁸ In ac	essure osmometry. ^c In stone.

TABLE 1 ANALYSES AND PROPERTIES OF THE PALLADIUM(II) COMPLEXES

Complex	₽(CH) ^b	$\nu(CH_2)^c$	v(BH)	<i>ν</i> (C=N) ^{<i>c</i>}	v(PPh) *	v(ClO)
II	3120	[²⁹⁵² ₂₉₀₀	_	1595		-
III	3100	[²⁹⁶⁵ 2910	2435	1585	[¹⁴²⁵ 1475	-
v	3120	[²⁹⁶⁵ 2920	$\begin{bmatrix} 2415 + 2435 d \\ 2280 \end{bmatrix}$	1602	_	-
VI	-	[²⁹⁷⁰ 2930	-	1600	[¹⁴³⁵ 1477	1095

TABLE 2 SELECTED IR BANDS OF THE PALLADIUM(II) COMPLEXES^a

^a In cm⁻¹, KBr disk. ^b In pyrazolyl moiety. ^c In 2-pycolyl moiety. ^d Slightly resolved doublet. ^e Characteristic bands of arylphosphines.

pyrazolyl groups, and two doublets at δ 7.33 (J 2.0 Hz) and 7.63 ppm (J 2.0 Hz) were assigned to H(3) and H(5). Moreover, the spectrum showed a doublet (J 5.0 Hz) at δ 2.91 ppm of two equivalent methylene protons in the 2-picolyl group, coupled to the ³¹P nucleus. The coupling constant was satisfactory for *cis* configuration of the methylene group with respect to tertiary phosphine [10]. Spectroscopic equivalence of two methylene protons indicated free rotation of the 2-picolyl group around the palladium–carbon σ bond and dissociation of the 2-picolyl nitrogen from palladium.

Complex III showed a double doublet (J 5.0, and 1.8 Hz) at δ 8.28 ppm for H(6) of the 2-picolyl groups. In ¹H NMR spectra of similar mononuclear 2-picolyl complexes [1], [Pd(2-picolyl)(acac)(PPh₃)] and [Pd(2-picolyl)(PPh₃)(Me₂NCS₂)], H(6) protons resonated at comparable field, but H(6) resonances were not observed in neutral dinuclear complexes with 2-picolyl bridges, such as [{Pd(2-picolyl)Cl(PPh₃)}₂] [1], [{Pd(2-picolyl)(OAc)(PPh₃)}₂] (OAc = acetato) [1], and [(Pd(2-picolyl)(BPz₄))₂], and probably overlapped with signals of some other aromatic protons in PPh₃ or BPz₄ moieties at higher field. Upfield shifts of H(6) protons in these dinuclear complexes was possibly due to anisotropic shielding effects of the PPh₃ ligand or 1-pyrazolyl groups.

From the reaction of I with $K(H_2BPz_2)$, two kinds of materials were obtained

Complex	$\delta(CH_2)$	δ(H(6))	$\delta(H(5))$ or $\delta(H(4))$	δ(H(3))
II ^b	$3.05(d, 7.7)^{d}$ 4.45(d, 7.7) ^d	8	8	8
III ^b	2.91(d, 5.0) *	8.28(dd, 5.0,1.8)	6.82(bt, 7.2) 7.02(dt, 7.2,1.8)	6.19(bd, 7.1)
٧I٢	2.72(bt, 9.3) ^f 4.38(dd, 9.3,4.5) ^f	7.76(d,5.5)	6.47(bt, 7.0) 6.99(bt, 7.0)	8

¹H NMR DATA OF THE 2-PYCOLYL GROUP OF THE PALLADIUM(II) COMPLEXES "

TABLE 3

^{*a*} δ (ppm), TMS; multiplicities and coupling constants in Hz are given in parentheses, d, doublet; bd, broad doublet: dd, doublet of doublets; bt, broad triplet; dt, doublet of triplets. ^{*b*} In CDCl₃. ^{*c*} In CD₂Cl₂. ^{*d*} Coupled to each other. ^{*c*} Coupled to ³¹P nucleus. ^{*f*} Coupled to each other and to ³¹P nucleus. ^{*s*} Not determined. after column-chromatographic separation on silica gel. One of them was a yellow solid of V*. The solid slowly decomposed in deoxygenated halogenated hydrocarbons and was slightly soluble in THF, C_6H_6 , and acetone. An IR spectrum of V showed many bands for 2-picolyl and H₂BPz₂ moieties, but no bands attributable to PPh₃. The H₂BPz₂ moiety gave a slightly resolved doublet at ca. 2425 and a singlet at 1060 cm⁻¹, characteristic of the H_2BPz_2 moiety coordinated to square-planar complexes [3]. These spectroscopic data and elemental analyses suggested product V to be a dinuclear complex of $[{Pd(2-picolyl)(H_2BPz_2)}_2]$. Although the mass spectrum of V measured at 190°C did not show a parent-peak of the complex, there were some interesting signals with appropriate isotope patterns centered at m/e 397 assignable to $[Pd(2-picolyl)_2Pd]^+$, at m/e 345 to $[Pd(2-picolyl)(H_2BPz_2)]^+$, and at m/e 291 to $[Pd(2-picolyl)_2]^+$. These signals were in agreement with a dinuclear structure of V and with coordination of 2-picolyl-nitrogen to palladium. It is noteworthy that the dinuclear structure of the 2-picolyl bridge in I was retained in the course of reactions with H₂BPz₂ and BPz₄ anions, but this was not the case for HBPz₃. However, reasons for these different reactivities are not obvious at the present stage.

The other minor product, IV, was a pale yellow air-sensitive powder, possibly a zerovalent phosphine species "Pd(PPh₃)_x" or its cyclometalation product [11]. Zerovalent palladium species with triphenylphosphine may be formed owing to the reducing ability of the H_2BPz_2 group and reductive elimination of the 2-picolyl group. The potassium salt of H_2BPz_2 was reported to reduce palladium(II) ions in aqueous solution to free metal [3].

Complex I was treated with hydrated silver perchlorate at room temperature in the presence of tris(1-pyrazolyl)methane, and a reaction mixture gave yellow microcrystals of VI, which were recrystallized from acetone and diethyl ether. In the ¹H and ¹³C NMR and IR spectra of VI were no signals attributable to the pyrazolyl derivative. The IR spectra showed many bands of triphenylphosphine, the 2-picolyl group, and a non-coordinating perchlorate anion. An out-of-plane deformation mode in the 2-picolyl moiety was observed at 425 cm⁻¹ and suggested coordination of 2-picolyl nitrogen, analogously to compound I [1]. The proton-decoupled ¹³C NMR spectrum of the 2-picolyl group (CD₂Cl₂), showed a doublet at δ 164.2 ppm (*J* 3.7 Hz, C(2)) and three slightly broadened singlets at δ 151.1 (C(6)), 137.7 (C(4)), and 26.2 ppm (methylene carbon), whereas two singlets at δ 125.5 and 121.1 ppm were assigned to C(3) and C(5). In addition, the ¹H NMR spectra of VI showed signals of non-equivalent methylene protons (Table 3), and a H(6) proton did not resonate around δ 8.3 ppm owing to its upfield shift. These spectroscopic data indicated retention of the 2-picolyl bridge and coordination of the 2-picolyl nitrogen.

Similar reactions of I and hydrated silver perchlorate with 2,2bis(1-pyrazolyl)propane or pyrazole failed to coordinate to palladium, and yielded VI. In spite of the potential chelate effect on complexation of poly(1pyrazolyl)methane derivatives, they could not break the coordination of 2-picolyl nitrogen neither displace triphenylphosphine owing to the low basicity of their 2-N donors. These results of neutral poly(1-pyrazolyl)methane derivatives were very

^{*} As for V, measurement of a ¹H NMR spectrum and osmometric or cryoscopic determinations of molecular weights were not performed owing to its low solubility.

different from those of poly(1-pyrazolyl)borate anions, which served as strong-field ligands to form three types of 2-picolyl complexes II, III, and V. On abstraction of chlorine from I by hydrated silver perchlorate, the water molecule probably occupied the coordination-site in place of the chlorine atom. Since the ClO₄ moiety in VI gave a T_2 (OClO) bending mode at 625 cm⁻¹ and a T_2 (ClO) stretching mode at 1095 cm⁻¹ without any significant splitting, coordination of ClO₄ was unlikely.

References

- 1 M. Onishi, K. Hiraki, K. Maeda, and T. Itoh, J. Organometal. Chem., 188 (1980) 245.
- 2 K. Nakatsu, K. Kafuku, H. Yamaoka, K. Isobe, Y. Nakamura, and S. Kawaguchi, Inorg. Chim. Acta, 54 (1981) L69.
- 3 S. Trofimenko, J. Amer. Chem. Soc., 89 (1967) 3170.
- 4 S. Trofimenko, J. Amer. Chem. Soc., 91 (1969) 3183.
- 5 M. Onishi, K. Hiraki, M. Shironita, Y. Yamaguchi, and S. Nakagawa, Bull. Chem. Soc. Japan, 53 (1980) 961.
- 6 M. Onishi, K. Sugimura, and K. Hiraki, Bull. Chem. Soc. Japan, 51 (1978) 3209.
- 7 S. Trofimenko, J. Amer. Chem. Soc., 92 (1970) 5118.
- 8 S. Trofimenko, Acc. Chem. Res., 4 (1971) 17.
- 9 W. Hückel and H. Bretschneider, Chem. Ber., 70 (1939) 2024.
- 10 G.E. Hartwell, R.V. Lawrence, and M.J. Smas, J. Chem. Soc., Chem. Commun., (1970) 912.
- 11 D.M. Fenton, J. Org. Chem., 38 (1973) 3192.